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Abstract. A critical analysis of the present day Electron Energy Loss Spectroscopy (EELS) data interpre-
tation methods has been done. The necessity for the consideration of a target as a multilayered structure
with different inelastic energy loss cross sections in the surface and the bulk layers has been shown to
be a reality both for the transmission EELS and the reflection EELS (REELS). A method to reconstruct
inelastic energy loss cross sections in various target layers from the experimental data has been presented.
Essential qualitative and quantitative dependence of the path length distribution function for reflected
electrons as a function of scattering angle has been revealed. The tested method for extraction of the
information from REELS experiments with angular resolution has been presented.

PACS. 34.80.-i Electron scattering – 34.50.Bw Energy loss and stopping power – 25.30.Fj Inelastic electron
scattering to continuum

1 Introduction

EELS spectra provide detailed information on the
target under study. The energy loss in both trans-
mission and reflection experiments is due to the
multiple interactions with the target atoms [1]. The
development of the method of extracting the elec-
tron differential inelastic scattering cross-section
ωin (E0, ∆) (E0 – probing beam energy, ∆ – energy
loss) from the experimental data is one of the most
topical issues in quantitative EELS [2,3]. Using a small-
angle approximation one can write down the spectrum
of electrons reflected from a target in the form of a
convolution:

R (d, ∆, Ω0, Ω) =

∞∫
0

AR (x, d, Ω0, Ω)Tin (x, ∆) dx (1)

T (d, ∆, Ω0, Ω) =

∞∫
0

AT (x, d, Ω0, Ω)Tin (x, ∆) dx, (2)

where equation (1) is for the reflected electrons and (2)
for the electrons transmitted through the target. Here
AR,T (x, d, Ω0, Ω) are path distribution functions of the
electrons reflected [3,4] from the plane-parallel target or
transmitted through the target [5], where x – path length,
d – target thickness, Ω0 = {θ0, ϕ0}, Ω = {θ, ϕ} – the solid
angles corresponding to the electrons entering and leaving
the layer respectively, and Tin (x, ∆) – the general Lan-
dau solution [6] describing the energy loss spectrum of
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the electrons that took path x. A detailed description of
the methods to calculate Tin (x, ∆) for the case of uniform
layers is given in [5].

One of the purposes of the present paper is to gen-
eralize the results [3,7] for the case of multilayer non-
homogeneous targets. Transmission EELS experiments [7]
correspond to the case where the target thickness d is
of the order of the average inelastic scattering length lin
and the probing beam energy E0 varying from tens to
hundreds keV. For the probing beam parameters given
in [7,8] the electron transport path in the solid is essen-
tially greater than the scattering length in the inelastic
channel ltr � lin and passing through the target does
not result in any important isotropization of the beam.
Therefore expression (2) AT (x, d, Ω0, Ω) can be written
as

AT (x, d, Ω0, Ω) = δ (x − d/µ0) δ (Ω0 − Ω) ,

where δ (x) is Dirac function and µ0 – the cosine of angle
between surface normal and incident beam. Consequently,
the approach for reconstructing ωin (E0, ∆) based on the
Landau solution [6] is sufficient for interpreting transmis-
sion EELS spectra provided the difference in inelastic cross
sections for various layers is taken into account.

A detailed and reliable solution of the elastic prob-
lem is of major importance for REELS. The influ-
ence of the reflected electrons path distribution function
AR (x, d, Ω0, Ω) on the shape of the extracted ωin (E0, ∆)
is analyzed in [2,3] where a strong qualitative de-
pendence of the extracted cross section shape on the
AR (x,∞, Ω0, Ω) parameters is noted. It should also be
noted that the assumptions used to determine the function
AR (x,∞, Ω0, Ω) in [4] (let us write it as A∞

R (x, Ω0, Ω))
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provide a reliable description for the paths with x > α ltr,
α � 1. A more detailed analysis employing a discrete
flux approach with a larger number of scattering direc-
tions of the elementary scattering act will enable us to
expand the x range (i.e. to decrease α) where the function
A∞
R (x, Ω0, Ω) is reliably identified. At x → 0 the path dis-

tribution function is determined by low-multiplicity scat-
tering processes in the elastic channel and therefore a de-
tailed description of the elastic scattering cross section
ωel (E0, γ) is needed (γ – is the electron scattering angle
between the Ω and Ω0 directions). This cannot be pro-
vided by the discrete flux approach [3].

At present one can give a most detailed descrip-
tion of AR (x, d, Ω0, Ω) for the needs of REELS by
solving the boundary-value problem for the transport
equation using the invariant imbedding approach [9,10];
after the linearization procedure one can obtain an ana-
lytical solution in the form of a Legendre polynomial se-
ries [9,10]. This approach provides an adequate descrip-
tion of AR (x, d, Ω0, Ω) within the x range 0 < x < ltr
and an exact description of the low-multiplicity scatter-
ing contribution to AR (x, d, Ω0, Ω) . The development of
REELS with angle resolution necessitates the investiga-
tion of AR (x, d, Ω0, Ω) with high accuracy.

2 The interpretation of the transmission
EELS spectra in the framework
of the multilayer model

The difference in electron excitation spectra in the sur-
face and in the bulk layers leads us to interpret trans-
mission EELS spectra with upper and lower sub-layers in
the plane-parallel layer under study. As the first approx-
imation, let us restrict ourselves to a three-layer target
model. Incident electrons excite surface plasmons in the
top and the bottom layers (both having thickness ds) and
bulk plasmons in the intermediate layer with thickness db
(we assume energy losses due to electron-hole transitions
and ionization are the same throughout the target). Thus
transmission function can be written as follows:

Tin (db, ds1 , ds2 , ∆) =

∆∫
0

ε∫
0

T sin (ds1 , ∆ − ε)

× T bin (db, ε − ε′)T sin (ds2 , ε
′) dε′dε. (3)

Subscript 1 corresponds to the upper layer and subscript 2
to the bottom layer. It is appropriate to mention here
that the designations “top” and “bottom” for the case of
transmission EELS are rather relative. To interpret the
curve we use the approximation (see above) for which
all the particles cover the same path, so taking into ac-
count the property of convolution (3) the geometry “top-
bulk-bottom”, “bottom-bulk-top”, “bottom-top-bulk-top-
bottom” etc. result in identical energy-loss spectra. To
make the choice between these options one should ana-
lyze the angular distributions of the scattered electrons.

In a one-speed approximation the functions T sin (ds, ∆)
are the same for the top and the bottom layers, therefore
equation (3) can be simplified:

Tin (db, ds, ∆) =

∆∫
0

T sin (ds, ∆ − ε)T bin (db, ε) dε, (4)

where ds = ds1 + ds2 .
In real spectra, low-energy losses rarely happen to be

described by a single frequency of surface plasmons at-
tributed to the top and bottom layers of thickness ds. This
could be explained both by the developed surface mor-
phology characteristic for the methods of thin film prepa-
ration and the influence of contaminations, oxide films,
radiation-stimulated segregation etc. So the surface layers
have to be divided into sub-layers dsi with the ith plasmon
excitation energy εpli respectively.

The probability Pin(q, ∆) for a charged particle with
velocity v (v =

√
2E0/me, me is electron mass), to cre-

ate an electron gas excitation (that is, a bulk plasmon or
electron-hole pair; for the detailed treatment of the sur-
face excitations see for example [12,13]) with energy ∆
and momentum q of unit length of transmission can be
expressed as follows [14]:

Pin(q, ∆) =
A

v
Im
{
− 1

ε(q, ∆)

}
δ(∆ − qv)

q2
, (5)

where A is a constant and ε(q, ∆) is the frequency- and
wave vector-dependent dielectric constant of the electron
gas. There are various approximations of ε(q, ∆) for the
region of interest, one of them is [15]:

ε(q, ∆) = 1 − ε2
pl

∆2 − β2q2 − q4/4 + iδ∆
, (6)

where εpl/� is the plasma frequency (� – Planck constant),
the constant β can be determined by fitting to a plasmon
dispersion curve and δ is the damping constant which in
the plasmon region (low q) is assumed to be small. Ex-
pression (6) is a suitable approximation not only for plas-
mon excitation but also for the creation of electron-hole
pairs with high q. Making the substitutions q2 = q2

⊥ + q2
‖ ,

q⊥ = mev θ, q‖ = ∆/v [14], qv = q‖ v one can integrate
over Ω to obtain the inelastic energy-loss differential cross-
section ωin (E0, ∆) and normalize it to obtain Iin (∆)

Iin(∆) =
∫

Pin(q, ∆) dΩ∫∫
Pin(q, ∆) dΩd∆

. (7)

In this paper we approximate the result of the integra-
tion of (7) by

Iin (∆) = λpIp (∆) +
∑
i

λiion Iiion (∆), (8)

where
Ip(∆) = K

(∆2−ε2pl)
2
+b4

, K = π√
8(ε4pl+b

4)(
√
ε4pl+b

4−ε2pl)
;
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Iiion (∆) =




0, ∆ < Ji

(1+ai)J
1+ai
i

∆2+ai
, ∆ ≥ Ji

; λiion = σiion
/
σin,

and λp = σp/σin – the probabilities of scattering via ion-
ization and plasmon channels in each elementary act of
inelastic scattering respectively; σp, σiion – the cross sec-
tions of plasmon inelastic scattering and the core-level
ionization respectively; εpl – plasmon excitation energy;
Ji – internal shell ionization threshold energy; b, αi –
are varied parameters. It should be noted that the term
“plasmon excitation” here means all the losses for the ex-
citation of valence electrons including the excitation of
electron-hole pairs as well, so that σp = σeh + σpl where
σpl, σeh are the excitation cross sections of the plasmon
and electron-hole pair, respectively.

Since the energy interval of interest for the transmis-
sion EELS is very narrow (typically up to 200 eV) and
is detected with extremely high energy resolution (tenths
of eV), the T s,bin (d, ∆) function can be calculated by its
expansion into a series which corresponds to the multiplic-
ity of the inelastic scatterings [5]. Let us use the general
Landau solution:

Tin (d, ∆) =
1

2πi

α+i∞∫
α−i∞

exp
[
p∆ − τin

(
1 − Iin (p)

)]
dp,

(9)
where τin = d/lin is a dimensionless path length obtained
from the inelastic mean free paths lin = (n0 σin)−1, σin is
the inelastic scattering cross section, n0 is the target atom
concentration, Iin (p) is the Laplace-image of the inelastic
indicatrix Iin (∆) (normalized to the inelastic scattering
cross section).

An expansion of exp
[
τinIin (p)

]
in (9) in the form of

a Taylor series combined with the convolution theorem
gives:

Tin (d, ∆) = exp (−τin)

(
δ (∆) +

∞∑
k=1

τkin
k!

I(k) (∆)

)
(10)

where I(k) (∆) =
∆∫
0

I(k−1) (∆ − ε) I(1) (ε) dε, I(1) (∆) =

Iin (∆).
When making specific calculations using formula (10)

one should take into account that the ratio of the surface
layer thickness ds to the mean free path in the inelastic
channel lin is significantly less than unity: τs = ds/lin �
1. It should be noted that the ds value depends on the sur-
face morphology and the surface contaminations. In this
paper we consider ds as a parameter characterizing the
size of the ds region having properties different to those in
the bulk. The value of ds will be determined by processing
experimental data with the method under discussion.

Therefore a first order approximation of ds can be writ-
ten as

T sin (ds, ∆) = exp (−τs) (δ(∆) + τs Isin(∆)) . (11)

The inelastic indicatrix Isin(∆) is described by (8) with
parameters εspl, λspl, bs corresponding to the frequencies
and inelastic cross sections of the surface plasmons.

The function T bin (db, ∆) is determined from the series
in (10) in which ten or more (depending on the width of
experimental energy interval ∆E) terms have to be in-
cluded.

The reconstruction of the cross section ωin (E0, ∆)
is based on the fitting-procedure: ω0

in (E0, ∆) is taken
from (8) with parameters from the tables in [16] as a zero
approximation followed by the minimization of the func-
tional

t =

∆E∫
0

(T exp
in (d, ∆) − Tin (d, ∆)) d∆ (12)

by means of varying the Tin (d, ∆) function parameters.
Here T exp

in (d, ∆) is experimentally measured EELS spec-
trum. Finally ωin (E0, ∆) is presented in the same form as
in (8) with parameters reconstructed from the minimizing
functional (12).

EELS spectra for 120 keV electrons transmitted
through silicon (Si) and aluminum (Al) targets with a
thickness of the order of 100 nm [7] are shown in Fig-
ure 1. Using the peak for elastically backscattered elec-
trons from [7] one can unambiguously determine τin =
d/lin. It is determined by the first term of (7). Figure 1 en-
ables us to compare the function calculated from (5) (solid
curve), the experimental data [7] for the case of multiple
scatterings and the curve calculated taking into account
the bulk excitations only (dotted line in Fig. 1). One can
see that in the latter case the peak of the first-order scat-
tering fits well but the discrepancies with the experimental
curve grow for the the higher orders of scattering. Actu-
ally one can achieve a satisfactory agreement between the
experimental and the calculated data by considering the
target as the three-layer structure (Fig. 1) with layers hav-
ing various thickness (d = 289 nm, ds = ds1+ds2 = 17 nm,
db = 272 nm for silicon; d = 148 nm, ds = 11 nm,
db = 137 nm for aluminium) and by taking into account
various plasma oscillation frequencies (Fig. 2). Single-
scattering inelastic cross-sections ωin (E0, ∆) in the bulk
and in the surface layers are shown in Figure 2 on a log-
arithmic scale. Since the energy losses interval under dis-
cussion corresponds to ∆ = 0÷70 eV the ionization losses
spectrum is not shown (the lowest ionization threshold of
the L3 shell of Si is equal to 104 eV, and the L3 shell of
Al =80 eV). The cross-section parameters corresponding
to the EELS data for Si and Al at E0 = 120 keV (8) are
shown in Table 1.

In the course of experimental data interpretation and
its comparison with the results of [7] transmission function
T exp
in (d, ∆) was found to have a peculiar behavior which

seems characteristic of both silicon and aluminum targets
in the region of 4 eV (Fig. 1). We can explain this fact by
assuming that the spread function of the energy-analyzer
used in [7] is “two-humped” and does not follow Gaussian
distribution.

An attempt to reconstruct a single-scattering in-
elastic cross-section ωin (E0, ∆) from the multi-order
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Fig. 1. EELS data for electrons of E0 = 120 keV having passed through the silicon and aluminum films. Points – experiment [7],
solid curve – calculations using cross-sections ωb

in(∆), ωs1
in(∆), ωs2

in(∆) (see Fig. 2) carried out on the basis of the method
developed in the present paper, dotted line – the curve calculated taking into account the bulk excitations only.

Table 1. Electron inelastic scattering cross-section parame-
ters. Superscripts s1, s2 and b correspond to the top, the bot-
tom and the bulk layer respectively.

Silicon Aluminum

σs1
p + σs2

p =

σs
p = σb

p = 0, 00014 nm2 σs
p = σb

p = 0, 00011 nm2

εs1
pl = 11, 4 eV; bs1 = 8, 9 eV

εs2
pl = 4, 1 eV; bs2 = 3, 9 eV εs

pl = 10, 5 eV; bs = 9, 8 eV

εb
pl = 16, 4 eV; bb = 6, 7 eV εb

pl = 14, 8 eV; bs = 4, 2 eV

scattering spectrum using a Fourier-logarithmic deconvo-
lution method (it can be derived from the general Landau
solution) was undertaken by Egerton and Wang [7]. In
this work the authors neglected the differences between
the inelastic cross-sections in the surface region and cross-
sections in the bulk to simplify calculations. This approxi-
mation results in various peculiarities of the reconstructed
function that have no physical meaning. The most strik-
ing of them is that in which ωin (E0, ∆) has a negative
value. Cross-sections extracted with the help of the tech-
nique under discussion are presented in Figure 2. For each
of ωbin(∆), ωs1in(∆), ωs2in(∆) the region is marked where the

specific energy-loss mechanism is valid. The cross-section
ωbin(∆) (curve 3) is characteristic of the uniform region
in the bulk; cross-sections ωs1in(∆) (curve 1) and ωs2in(∆)
(curve 2) are valid in the near-surface layers. The cross-
section extracted in [7] (curve 4) is presented for compar-
ison.

3 REELS. Effect of the scattering angle
on reflected electrons path distribution

Reflected electron energy loss spectroscopy (REELS) has
various advantages in experimental performance as com-
pared to transmission EELS. REELS provides principally
new capabilities for the electron energies corresponding
to the inelastic mean free path lin of several mono-layers
(transmission EELS is practically unfeasible in such case).
However, as it is evident from equation (1) an adequate
interpretation of REELS experiments requires a detailed
quantitative description of the path distribution function
AR (x, d, Ω0, Ω) for short paths x. As the REELS re-
flection signal is formed on paths as long as x ≈ lin,
and the typical inequality for the electron scattering is
lin � ltr [9], we arrive at x � ltr thus proving the
small-angle approximation to be valid for the reflection
EELS. A deduction of function AR (x, d, Ω0, Ω) in [9] can
be made using the boundary-value problem solution for
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Fig. 2. Electron inelastic scattering cross-sections: 1) ωs1
in (E0, ∆) – for the top layer, 2) ωs2

in (E0, ∆) – for the bottom layer,
3) ωb

in (E0, ∆) – for the bulk, 4) ω (E0, ∆) – calculated data from [7], insert: enlarged part of ω (E0, ∆) from [7].

the transfer equation by means of an invariant-imbedding
approach. An analytical solution can be obtained with the
small-angle approximation. According to [4,9] the func-
tion A∞

R (x, Ω0, Ω) is calculated as follows:

A∞
R (x, Ω0, Ω) = n0 ωel (γ) exp (−n0σelx)

+ n0

∞∑
l=1

2l + 1
2

(ωl − σel)Pl(γ)

× [exp (−n0 (ωl − σel)x) − exp (−n0σelx)] , (13)

where ωl are coefficients of the differential elastic scat-
tering cross section ωel (γ) after expansion into a Legen-
dre polynomial Pl(γ) series, σel is the full elastic scatter-
ing cross section, and n0 is the concentration of target
atoms. The behavior of the path length distribution func-
tion A∞

R (x, Ω0, Ω) at various scattering angles and prob-
ing beam energies E0 can be unambiguously determined
by function (13) which is an indubitable advantage if one
compares it with the approach most used nowadays. In
the latter approach: i) A∞

R (x, Ω0, Ω) is ambiguous, ii) the
angle distributions of elastically scattered electrons and
electrons having suffered multiple collisions are the same
which is contrary to experimental data. The procedure
used for the calculation of the function A∞

R (x, Ω0, Ω) gives
a precision in the determination of the path distribution
function at x → 0 coinciding with the precision in the
determination of the elastic cross-section ωel (γ).

Substitution of (10) and (13) into equation (1) gives:

R (d, ∆, Ω0, Ω) = C0 (d, Ω0, Ω) δ (∆)

+
∞∑
k=1

Ck (d, Ω0, Ω) I(k) (∆), (14)

where

Ck (d, Ω0, Ω)=
∞∫
0

AR (x, d, Ω0, Ω) (x/lin)k

k! exp (−x/lin) dx

≈
d(1/µ0+1/µ)∫

0

A∞
R (x, Ω0, Ω) (x/lin)k

k! exp (−x/lin) dx

(15)
where the coefficients of the reflection function expansion
into a series of I(k) (∆) are similar to (10), Ck (d, Ω0, Ω) is
the angular distributions of the elastically reflected elec-
trons, and µ, µ0 are the cosines of the angles between the
surface normal and the reflected and the incident beams
respectively.

A correlation between the calculated values of
C∞

0 (Ω0, Ω) and the experimental data obtained by
Bronschtein and Pronin [17] for the angle distribution of
elastically scattered electrons can be seen in Figure 3.

It is convenient to use a more detailed form of (14) in
which the plasmon and ionization channels and the inter-
ference between them are considered in an explicit form:
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Fig. 3. Dependence of C∞
0 (Ω, Ω0) on scattering angle γ. Initial

electron energy E0 = 1 keV. 1) target of Al, 2) target of Cu,
3) target of Ag, 4) target of Au. Solid line – calculation, doted
line with points – experimental data [17].

R (d, ∆, Ω0, Ω) = C0 (d, Ω0, Ω) δ (∆)

+
∞∑
k=1

(λp)
k Ck (d, Ω0, Ω) I(k)

p (∆)

+
∞∑
k=1

(λi)
k
Ck (d, Ω0, Ω) I

(k)
i (∆)

+
∞∑
k=1

∞∑
n=1

(λi)
k (λp)

n n!k!
(n + k)!

Ck+n (d, Ω0, Ω)

×
∆∫

0

I
(k)
i (∆ − ε) I(n)

p (ε)dε. (16)

To compare the results of our calculations with the
experimental data a spread function of the energy analyzer
g (∆) was expressed as a Gaussian distribution with a half-
width ξ that corresponds to the energy resolution of the
experiments to be interpreted:

g (∆) =
1√
2πξ

exp
(
−∆2

2ξ2

)
. (17)

So the function Rg to be compared with experimental
data is

Rg (d, ∆, Ω0, Ω) =

E0∫
0

g (∆ − ε)R (d, ε, Ω0, Ω) dε (18)

with R (d, ∆, Ω0, Ω) determined by (16).
The method developed allows a simple generalization

in the case of electron reflection from inhomogeneous lay-
ered structures. Let us consider the target consisting of
multiple layers d0, d1,..., dn (the subscript denotes the
layer number) of different materials 0, 1, . . ., n, where the
numbering begins from the upper layer. Equation (14) in
this case on account of the additivity of the integral takes
the form:

R0,1,... (d0, d1, ..., ∆, Ω0, Ω) =

n∑
i=0

di∫
0

ARi (d0, d1, ..., x, Ω0, Ω)Tini (x, ∆) dx. (19)

To describe the elastic channel in ith layer and inelastic
scattering in ith layer the following designations have been
introduced in equation (19):

ARi (d0, d1, ..., x, Ω0, Ω) =

n0

∞∑
l=1

2l + 1
2

(ωl,i − σel i)Pl(cos γ)

×
[
exp

(
n0 (ωl,i − σel i)u + n0

i−1∑
k=0

(ωl,k − σel k)uk

)

− exp

(
−n0 σel i u − n0

i−1∑
k=0

σel k uk

)]

+ n0 exp

(
−n0 σel i u − n0

i−1∑
k=0

σel k dk

)
ωel (γ) , (20)

u = xµ+µ0
µµ0

, ui = di
µ+µ0
µµ0

,

Tini (x, ∆) =
1

2πj
exp

(
−τ −

i−1∑
k=0

τk

)

×
ψ+j∞∫
ψ−j∞

exp

(
p∆ − τIini (p) −

i−1∑
k=0

τkIink
(p)

)
dp, (21)

τ = τin
µ+µ0
µµ0

, τi = di

lini

µ+µ0
µµ0

.
For the case of the layer of material 0 on the semi-

infinite substrate of material 1 we obtain:

R0,1(d0, ∆, Ω0, Ω) = R0(d0, ∆, Ω0, Ω)

+

∞∫
0

AR1

(
(x + d0)

µ + µ0

µµ0
, Ω0, Ω

)

× Tin1

(
(x + d0)

µ + µ0

µµ0
, ∆

)
dx, (22)
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Fig. 4. REELS data for the electrons with E0 = 3116 eV
reflected from the polycrystalline specimen of Si at an angle
of 138◦ (normal incidence of probing beam). Points – experi-
ment [19], dotted line – calculation for the spectrometer with
ideal resolution, solid curve – calculation taking into account
real experimental resolution.

where R0(d0, ∆, Ω0, Ω) is the reflection function corre-
sponding to the layer of thickness d0. Next taking into
account (19, 20) and (21) we have

R0,1(d0, ∆, Ω0, Ω) = R0(d0, ∆, Ω0, Ω)

+
∫ ∆∫

0

Tin0 (d0, ε, Ω0, Ω
′)R∞

1 (∆ − ε, Ω′, Ω) dεdΩ′,

(23)

which is of the same form as the expression obtained
in [18].

Figure 4 represents the spectrum of the electrons with
E0 = 3116 eV reflected at an angle of 138◦ (normal prob-
ing beam incidence) from a polycrystalline sample of Si.
The narrowness of the energy region studied in experi-
ments [19] does not allow an interpretation of the ioniza-
tion energy losses. The low energy resolution of the exper-
imental devices used in [19] resulted in the confluence of

the bulk and the surface lines into one peak thus making
it possible to treat the spectrum in Figure 4 within the
framework of the uniform model with a single plasmon
excitation frequency. The calculated curve is obtained us-
ing (14–18). To describe the REELS spectrum it is suf-
ficient to use the first two terms in the right hand part
of (16) which are responsible for the elastic peak and the
excitation of plasmons:

R (∆, Ω0, Ω) = C0 (Ω0, Ω) δ (∆)

+
∞∑
k=1

(λp)
k
Ck (Ω0, Ω) I(k)

p (∆) (24)

The experimental curve [19] corresponds to the narrow
region of electron losses 0 < ∆ < Ji below the ionization
threshold. The REELS spectrum is reconstructed on the
basis of (24) for the semi-infinite media model and is rep-
resented in Figure 4 by a dashed line. If one approximates
the spread function by a Gaussian distribution with a half-
width ξ = 3, 9 eV corresponding to the energy resolution
of the experiments [19] in which ∆E/E0 = 0, 3% and then
makes the calculations using equation

Rg (∆, Ω0, Ω) = C0 (Ω0, Ω) g(∆)

+
∞∑
k=1

(λp)
k
Ck(Ω0, Ω)

E0∫
0

g(∆ − ε)I(k)
p (ε) dε (25)

the curve obtained (solid line in Fig. 4) fits well the ex-
perimental data. Contrary to the EELS data processing
methods, the calculation technique presented here is based
on the solution of the direct (not the reverse) problem and
thus does not require an “elastic peak subtraction” pro-
cedure which can prove ambiguous. The coincidence of
the calculated curve and the experimental one (Fig. 4)
takes place at the following values of the parameters used:
εpl = 16, 4 eV, b = 9 eV, lpl = 7, 9 nm, lin = 5, 4 nm. It
should be noted that for the first approximation, electron
scattering parameters from [19] have been used; further
refinement of them has been carried out on the basis of
the fitting procedure.

A characteristic feature of the Al REELS spectrum
obtained contrast to that obtained in [19] with high en-
ergy resolution is the presence of a clearly defined sur-
face plasmon [20]. The interpretation of the experimen-
tal data represented in [20] should be carried out on the
basis of a two-layer problem (23) in which the path dis-
tribution function is determined from the elastic problem
solution for a uniform semi-infinite media. For the inelastic
channel description the upper layer of thickness ds should
be marked; the value of Isin (∆) for this layer in equa-
tions (21–23) describes the surface plasmon only where as
the region below ds is described by the cross-section (8)
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Fig. 5. REELS data for electrons with E0 = 2000 eV reflected
from the polycrystal specimen of Al at angle 155◦. Points –
experiment [20], solid curve – calculation in which two layered
model separating regions of the bulk and the surface plasmons
was used.

in which only the bulk plasmon Ibin (∆) is included:

Rs,b (ds, ∆, Ω0, Ω) = Rs (ds, ∆, Ω0, Ω)

+

∆∫
0

T bin

(
ds

µ + µ0

µµ0
, ε

) ∞∫
0

Ab
R

(
x

µ + µ0

µµ0
, Ω0, Ω

)

× T bin

(
x

µ + µ0

µµ0
, ∆ − ε

)
dxdε

= Rs (ds, ∆, Ω0, Ω) +

∆∫
0

T sin

(
ds

µ + µ0

µµ0
, ε

)

× R∞
b (∆ − ε, Ω0, Ω) dε. (26)

The first term in the right hand part of (26) deter-
mines the electron flux reflected from the upper layer of
thickness ds and can be calculated by means of expres-
sions (20) and (21) where Isin (∆) is determined by the
surface plasmon parameters. The second term is the con-
volution of the inelastic transmission function (calculated
using (9) with Isin (∆)) and the reflection function for a
semi-infinite sample in which there exist only the losses
caused by the bulk plasmon excitation and ionization. The
calculation of Rs and Rb was carried out with the same
path distribution AR. The layer thickness ds is of the or-
der of several lattice parameters and should be treated as

Fig. 6. Electron inelastic scattering cross-sections.
1) ωs

in(E0, ∆) – for surface layer, 2) ωb
in(E0, ∆) – for the

bulk, 3) ωin(E0, ∆) – calculated data from [20].

a fitting parameter since its value depends on a number of
undefined factors mainly related to the surface morphol-
ogy, the presence of oxides and contaminations. REELS
spectra for the electrons reflected from Al with initial en-
ergy E0 = 2 keV are shown in Figure 5. The solid line
illustrates calculations based on the two-layer model (26)
with the following parameters: εbpl = 15, 3 eV, bb = 5, 9 eV,
lbpl = 4, 7 nm, εspl = 9, 7 eV, bs = 4, 7 eV, lspl = 4 nm,
lsin = 3, 8 nm, ds = 1, 1 nm.

The inadequacy of the uniform model (not the two-
layer model) can be seen from the following speculation:
following the reasoning in [3,20] one uses the cross-section
Iin (∆) = λpIp (∆) + λiIi (∆) where in turn Ip (∆) =
λspI

s
p (∆)+λbpI

b
p (∆) for the entire sample one will obtain a

curve which has a clearly observable and overrated contri-
bution from the many-order scattering of the s-plasmon
and a “hole” of negative values which should appear in
Iin (∆) . This is shown in Figure 6 and can be seen in
papers [3,20].
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4 Conclusion

We have compared different solid state diagnostics meth-
ods based on transmission and reflection EELS for the
same material.

As the thicknesses mentioned above are the fitting
parameters depending on the surface morphology, their
values are determined by the minimization of the func-
tional (12). The analysis carried out in the present paper
shows that from the point of view of the EELS spectra
interpretation a film and a semi-infinite sample are widely
different from one another.

The most striking differences are observed inside the
layers ds where the surface plasmon excitation losses take
place; the value of dTs extracted from the transmission ex-
periments is several times higher than dRs extracted from
the reflection experiments. The fact that the absolute val-
ues of dTs are of the order of tens mono-layers indicates the
poor quality of the targets. The method of reconstruct-
ing dTs enables one to interpret its value as the size of the
region in which the target properties are different from
those of the uniform material far from the surface. The
value of dTs is determined both by the developed surface
morphology and by the contaminations which are impos-
sible to remove. This fact signifies that the errors of the
EELS target investigation method are fundamentally ir-
removable.

The REELS method, which permits the cleaning of
targets in a vacuum chamber, provides much more reliable
and unambiguous experimental data. This is confirmed
by the fact that the depth of the near-surface region is
of the order of several mono-layers. The complication of
experimental data treatment method due to the problem
of determining the path distribution function can be suc-
cessfully surmounted which is demonstrated in the present
paper.
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